Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances

Foraging range, an important component of bee ecology, is of considerable interest for insect-pollinated plants because it determines the potential for outcrossing among individuals. However, long-distance pollen flow is difficult to assess, especially when the plant also relies on self-pollination....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-09, Vol.105 (36), p.13456-13461
Hauptverfasser: Pasquet, Rémy S, Peltier, Alexis, Hufford, Matthew B, Oudin, Emeline, Saulnier, Jonathan, Paul, Lénaic, Knudsen, Jette T, Herren, Hans R, Gepts, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Foraging range, an important component of bee ecology, is of considerable interest for insect-pollinated plants because it determines the potential for outcrossing among individuals. However, long-distance pollen flow is difficult to assess, especially when the plant also relies on self-pollination. Pollen movement can be estimated indirectly through population genetic data, but complementary data on pollinator flight distances is necessary to validate such estimates. By using radio-tracking of cowpea pollinator return flights, we found that carpenter bees visiting cowpea flowers can forage up to 6 km from their nest. Foraging distances were found to be shorter than the maximum flight range, especially under adverse weather conditions or poor reward levels. From complete flight records in which bees visited wild and domesticated populations, we conclude that bees can mediate gene flow and, in some instances, allow transgene (genetically engineered material) escape over several kilometers. However, most between-flower flights occur within plant patches, while very few occur between plant patches.
ISSN:0027-8424
1091-6490
1091-6490
DOI:10.1073/pnas.0806040105