Short Drug–Light Intervals Improve Liposomal Chemophototherapy in Mice Bearing MIA PaCa‑2 Xenografts
Chemophototherapy (CPT) is an emerging tumor treatment that combines phototherapy and chemotherapy. Long-circulating (LC) liposomes can stably incorporate 2 mol % porphyrin-phospholipid (PoP) in the bilayer and load doxorubicin (Dox) to generate LC-Dox-PoP liposomes, for single-agent CPT. Following...
Gespeichert in:
Veröffentlicht in: | Molecular pharmaceutics 2018-09, Vol.15 (9), p.3682-3689 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemophototherapy (CPT) is an emerging tumor treatment that combines phototherapy and chemotherapy. Long-circulating (LC) liposomes can stably incorporate 2 mol % porphyrin-phospholipid (PoP) in the bilayer and load doxorubicin (Dox) to generate LC-Dox-PoP liposomes, for single-agent CPT. Following intravenous administration to mice, LC-Dox-PoP liposomes (2 mg/kg Dox) circulated with similar blood concentration ranges produced by a typical human clinical dose of DOXIL (50 mg/m2 Dox). This dosing approach aims to achieve physiologically relevant Dox and PoP concentrations as well as CPT vascular responses in mice bearing subcutaneous human pancreatic MIA PaCa-2 xenografts. Phototreatment with 2 mg/kg LC-Dox-PoP induced vascular permeabilization, leading to a 12.5-fold increase in Dox tumor influx estimated by a pharmacokinetic model, based on experimental data. Shorter drug–light intervals (0.5–3 h) led to greater tumoral drug deposition and improved treatment outcomes, compared to longer drug–light intervals. At 2 mg/kg Dox, CPT with LC-Dox-PoP liposomes induced tumor regression and growth inhibition, whereas chemotherapy using several other formulations of Dox did not. LC-Dox-PoP liposomes were well tolerated at the 2 mg/kg dose. |
---|---|
ISSN: | 1543-8384 1543-8392 |
DOI: | 10.1021/acs.molpharmaceut.8b00052 |