Oxide ceramic femoral heads contribute to the oxidation of polyethylene liners in artificial hip joints
Experimental evidence demonstrates that a loss of stoichiometry at the surface of oxide bioceramic femoral heads enhances the oxidation rate of polyethylene acetabular liners in artificial hip joints. Contradicting the common notion that ceramics are bioinert, three independent experiments confirmed...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2018-06, Vol.82, p.168-182 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental evidence demonstrates that a loss of stoichiometry at the surface of oxide bioceramic femoral heads enhances the oxidation rate of polyethylene acetabular liners in artificial hip joints. Contradicting the common notion that ceramics are bioinert, three independent experiments confirmed substantial chemical interactions between the ceramic femoral heads and their polyethylene counterparts. The experiments reported herein included hydrothermal tests, frictional tests, and hip-simulator experiments. It was discovered that oxide and non-oxide femoral heads differently affected the oxidation processes at the surface of the polyethylene liners, all other testing parameters being equal. Analytical data from X-ray photoelectron (XPS), cathodoluminescence (CL), Fourier-transform infrared (FTIR), and Raman spectroscopies unequivocally and consistently showed that the oxidation rate of polyethylene liners was greater when coupled with oxide as opposed to non-oxide ceramic heads. XPS analyses of O-Al-O bond fractions at the surface of a zirconia-toughened alumina (ZTA) short-term (20 months in vivo) femoral heads retrieval showed a ~50% reduction in favor of oxygen vacancy O-Al-V
and hydroxylated Al-O-H bonds. Off-stoichiometry drifts were confirmed in vitro under both static and dynamic conditions. They triggered oxidation and tangibly affected an advanced highly cross-linked sequentially irradiated and annealed ultra-high molecular weight polyethylene (UHMWPE) liner (increase in oxidation index up to ΔOI~1.2 after 5 × 10
cycles under dynamic swing conditions). Second-generation UHMWPE liners infused with vitamin E were also affected by the free flow of oxygen from the oxide femoral heads, although to a lesser extent. The fundamental findings of this study, which were also confirmed on retrievals, call for revised standards in material design and testing. Adopting these new criteria will provide an improved understanding of the importance of off-stoichiometry at the head/liner interface and may lead to significant extensions in artificial joint lifetimes. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2018.03.021 |