Effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese from goat milk

Textural attributes are a manifestation of the rheological properties and physical structure of foods, cheeses among these. In order to describe these physical properties, the objective of this work was to analyse the effect of deformation history on the stress relaxation behaviour of Colombian Cari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food science and technology international 2018-09, Vol.24 (6), p.487-496
Hauptverfasser: Tirado, Diego F, Acevedo, Diofanor, Torres-Gallo, Ramiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Textural attributes are a manifestation of the rheological properties and physical structure of foods, cheeses among these. In order to describe these physical properties, the objective of this work was to analyse the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk with 3.75% (F1), 4.00% (F2) and 4.25% (F3) fat content, through prediction made by a four-term Prony series based on Chen's model. For this, stress relaxation data and stress relaxation spectra were analysed. Moreover, textural attributes by texture profile analysis were measured. Physicochemical results were similar to those published by other authors, and all samples meet national and international standards. Results from this work showed that Chen's model could be successfully used to describe the effect of deformation history on the stress relaxation behaviour of Colombian Caribbean coastal cheese made from goat milk. F1 had the highest elastic response, with the most significant residual modules (P0) and relaxation times (τ1, τ2 and τ3). On the other hand, residual modules and relaxation times (τ1, τ2 and τ3) for cheeses F2 and F3 did not present statistically significant differences (p > 0.05). Besides, by interpretation of the stress relaxation spectra, F1 presented the firmest structure (greatest distribution function and relaxation time) which was characterised by the highest elastic behaviour. Finally, according to texture profile analysis test, F1 had the highest hardness, cohesiveness and chewiness, whereas F2 and F3 did not present statistically significant differences (p > 0.05) between them.
ISSN:1082-0132
1532-1738
DOI:10.1177/1082013218767006