Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators

Using correlative EELS and CL we identify the surface plasmon resonance modes in an upright split ring resonator. The two techniques provide complementary information and together can probe the structure of the magnetic dipole moment in the infra-red and coupled rim modes in the visible spectrum. Ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electron microscopy 2018-03, Vol.67 (suppl_1), p.i40-i51
Hauptverfasser: Bicket, Isobel C, Bellido, Edson P, Meuret, Sophie, Polman, Albert, Botton, Gianluigi A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using correlative EELS and CL we identify the surface plasmon resonance modes in an upright split ring resonator. The two techniques provide complementary information and together can probe the structure of the magnetic dipole moment in the infra-red and coupled rim modes in the visible spectrum. Abstract We present the surface plasmon resonance modes in three-dimensional (3D) upright split ring resonators (SRR) as studied by correlative cathodoluminescence (CL) spectroscopy in a scanning electron microscope (SEM) and electron energy loss spectroscopy (EELS) in a transmission electron microscope. We discuss the challenges inherent in studying the plasmon modes of a 3D nanostructure and how meeting these challenges benefits from the complementary use of EELS and SEM-CL. With the use of EELS, we detect a strong first order mode in the SRR; with comparison to simulations, we are able to identify this as the well-known magnetic dipole moment of the SRR. Combining the EELS spectra with SEM-CL on the same structure reveals the higher order modes present in this 3D nanostructure, which we link to the coupling and hybridization of rim modes present in the two upright hollow pillars of the split ring.
ISSN:0022-0744
2050-5698
1477-9986
2050-5701
DOI:10.1093/jmicro/dfy010