Integrated pest management models and their dynamical behaviour
Two impulsive models of integrated pest management (IPM) strategies are proposed, one with fixed intervention times and the other with these unfixed. The first model allows natural enemies to survive but under some conditions may lead to extinction of the pest. We use a simple prey-dependent consump...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2005, Vol.67 (1), p.115-135 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two impulsive models of integrated pest management (IPM) strategies are proposed, one with fixed intervention times and the other with these unfixed. The first model allows natural enemies to survive but under some conditions may lead to extinction of the pest. We use a simple prey-dependent consumption model with fixed impulsive effects and show that there exists a globally stable pest-eradication periodic solution when the impulsive period is less than certain critical values. The effects of pest resistance to pesticides are also studied. The second model is constructed in the light of IPM practice such that when the pest population reaches the economic injury level (EIL), a combination of biological, cultural, and chemical tactics that reduce pests to tolerable levels is invoked. Using analytical methods, we show that there exists an orbitally asymptotically stable periodic solution with a maximum value no larger than the given Economic Threshold (ET). The complete expression for this periodic solution is given and the ET is evaluated for given parameters. We also show that in some cases control costs can be reduced by replacing IPM interventions at unfixed times with periodic interventions. Further, we show that small perturbations of the system do not affect the existence and stability of the periodic solution. Thus, we provide the first demonstration using mathematical models that an IPM strategy is more effective than classical control methods. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1016/j.bulm.2004.06.005 |