Thermo‐Driven Controllable Emulsion Separation by a Polymer‐Decorated Membrane with Switchable Wettability

A thermoresponsive Poly(N‐isopropylacrylamide) (PNIPAAm)‐modified nylon membrane was fabricated via hydrothermal route. Combining rough structure, proper pore size, and thermoresponsive wettability, the membrane can separate at least 16 types of stabilized oil‐in‐water and water‐in‐oil emulsions at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-05, Vol.57 (20), p.5740-5745
Hauptverfasser: Zhang, Weifeng, Liu, Na, Zhang, Qingdong, Qu, Ruixiang, Liu, Yanan, Li, Xiangyu, Wei, Yen, Feng, Lin, Jiang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A thermoresponsive Poly(N‐isopropylacrylamide) (PNIPAAm)‐modified nylon membrane was fabricated via hydrothermal route. Combining rough structure, proper pore size, and thermoresponsive wettability, the membrane can separate at least 16 types of stabilized oil‐in‐water and water‐in‐oil emulsions at different temperatures. Below the LCST (ca. 25 °C), the material exhibits hydrophilicity and underwater superoleophobicity, which can be used for the separation of various kinds of oil‐in‐water emulsions. Above the LCST (ca. 45 °C), the membrane shows the opposite property with high hydrophobicity and superoleophilicity, and it can then separate stabilized water‐in‐oil emulsions. The material exhibits excellent recyclability and high separation efficiency for various kinds of emulsions and the hydrothermal method is facile and low‐cost. The membrane shows good potential in real situations such as on‐demand oil‐spill cleanup, industrial wastewater treatment, remote operation of oil/water emulsion separation units, and fuel purification. A temperature‐driven membrane was developed by a facile hydrothermal method. By the combination of rough structure, proper pore size, and thermoresponsive wettability, the membrane can separate both stabilized oil‐in‐water and water‐in‐oil emulsions at different temperatures. The material exhibits excellent recyclability and high separation efficiency for various kinds of emulsions.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201801736