Metallothermic Reduction of Silica Nanoparticles to Porous Silicon for Drug Delivery Using New and Existing Reductants

In this study, the influence of metals (Mg, Al, and Ca) and reaction conditions (time, temperature, and metal grain size) on the metallothermic reduction of Stöber silica nanoparticles (NPs) to form porous Si has been explored. Mg metal was found to be an effective reducing agent even at temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-06, Vol.24 (31), p.7913-7920
Hauptverfasser: Lai, Yiqi, Thompson, Jonathan R., Dasog, Mita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, the influence of metals (Mg, Al, and Ca) and reaction conditions (time, temperature, and metal grain size) on the metallothermic reduction of Stöber silica nanoparticles (NPs) to form porous Si has been explored. Mg metal was found to be an effective reducing agent even at temperatures below its melting point; however, it also induced a high degree of structural damage and morphology change. Al was effective in reducing silica NPs only at its melting point or above, but the resulting particles retained a higher degree of structural morphology as compared to those reduced using Mg. Ca was found to be ineffective in reducing silica. A new reductant, a mixture of 70 % Mg and 30 % Al, was found to induce the least amount of morphology change, and the reactions proceeded at a temperature (450 °C) lower than those required with Mg or Al individually. Furthermore, porous Si NPs obtained using Mg, Al, and the mixture of 70 % Mg and 30 % Al as reductants have been investigated as carriers for ibuprofen loading and release. Porous Si obtained from reductions with Mg and the Mg/Al mixture showed higher drug loading and a sustained drug release profile, whereas porous Si obtained from Al reduction had lower loading and showed a conventional release profile over 24 h. Coming through: Silica nanoparticles have been reduced to silicon with different metals and combinations thereof (see graphic). The products thus obtained have been tested as nanocarriers for ibuprofen uptake and delivery.
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201705818