A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems

In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2018-01, Vol.18 (8), p.1250-1258
Hauptverfasser: Park, Young-June, Yu, Taejong, Yim, Se-Jun, You, Donghyun, Kim, Dong-Pyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1258
container_issue 8
container_start_page 1250
container_title Lab on a chip
container_volume 18
creator Park, Young-June
Yu, Taejong
Yim, Se-Jun
You, Donghyun
Kim, Dong-Pyo
description In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer. The 3D printed flow distributor with a CFD-optimized fluidic damper is found to achieve a low maldistribution factor (MF) of 2.2% for the average flow rate over 25 exit channels while inducing only a minor increment (
doi_str_mv 10.1039/c8lc00004b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2018022116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2026237592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-e12ec9fa8ab003a7befe4a0c5c9aa2217868a79291a979d7deea5d9f9a49330f3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIKeBHEsfLEp5SJTawjhzHFi5JXPxQ1b_H0NIFs5mRfXQ1cwA4x-gGI8pvZdVLlCpvD8AU54xmCFf8cD9zNgEn3i8RwkVeVsdgQnhR8rJkUyDnkN5nK2fGoDqoe7uGnfHBmTYG6-DahA8YR6OtG7a_TgQFpR2Dsz1Mz3CIfTCZD0J-poTBSGd1H01nJPQbH9TgT8GRFr1XZ7s-A--PD2_1c7Z4fXqp54tM5jgPmcJESa5FJVqEqGCt0ioXSBaSC0EIZlVZCcYJx4Iz3rFOKVF0XHORc0qRpjNwtc1dOfsVlQ_NYLxUfS9GZaNvSNKCUhAuE3r5D13a6Ma0XaJISSgrOEnU9ZZKN3nvlG6SqEG4TYNR86O-qatF_av-LsEXu8jYDqrbo3-u6TfRFX-O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2026237592</pqid></control><display><type>article</type><title>A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Park, Young-June ; Yu, Taejong ; Yim, Se-Jun ; You, Donghyun ; Kim, Dong-Pyo</creator><creatorcontrib>Park, Young-June ; Yu, Taejong ; Yim, Se-Jun ; You, Donghyun ; Kim, Dong-Pyo</creatorcontrib><description>In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer. The 3D printed flow distributor with a CFD-optimized fluidic damper is found to achieve a low maldistribution factor (MF) of 2.2% for the average flow rate over 25 exit channels while inducing only a minor increment (&lt;6%) in the pressure drop. A generalized manual is proposed for the design of optimal flow distributors with different scale-up dimensions. Using the manual, an optimal flow distributor with 625 stacked microchannels with a MF of only 1.2% is successfully designed. It is expected that the design manual and the rapid printing platform will allow the efficient development of multi-channel stacked micro-devices such as those in drug delivery and energy conversion systems where equidistribution of fluid flow is highly demanded.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c8lc00004b</identifier><identifier>PMID: 29569667</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Channels ; Computational fluid dynamics ; Distributors ; Drug delivery systems ; Energy conversion ; Flow velocity ; Fluid flow ; Microchannels ; Pressure drop ; Three dimensional flow ; Three dimensional printing ; Uniform flow</subject><ispartof>Lab on a chip, 2018-01, Vol.18 (8), p.1250-1258</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-e12ec9fa8ab003a7befe4a0c5c9aa2217868a79291a979d7deea5d9f9a49330f3</citedby><cites>FETCH-LOGICAL-c414t-e12ec9fa8ab003a7befe4a0c5c9aa2217868a79291a979d7deea5d9f9a49330f3</cites><orcidid>0000-0002-6804-1955 ; 0000-0003-4383-3056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29569667$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Young-June</creatorcontrib><creatorcontrib>Yu, Taejong</creatorcontrib><creatorcontrib>Yim, Se-Jun</creatorcontrib><creatorcontrib>You, Donghyun</creatorcontrib><creatorcontrib>Kim, Dong-Pyo</creatorcontrib><title>A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer. The 3D printed flow distributor with a CFD-optimized fluidic damper is found to achieve a low maldistribution factor (MF) of 2.2% for the average flow rate over 25 exit channels while inducing only a minor increment (&lt;6%) in the pressure drop. A generalized manual is proposed for the design of optimal flow distributors with different scale-up dimensions. Using the manual, an optimal flow distributor with 625 stacked microchannels with a MF of only 1.2% is successfully designed. It is expected that the design manual and the rapid printing platform will allow the efficient development of multi-channel stacked micro-devices such as those in drug delivery and energy conversion systems where equidistribution of fluid flow is highly demanded.</description><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Distributors</subject><subject>Drug delivery systems</subject><subject>Energy conversion</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Microchannels</subject><subject>Pressure drop</subject><subject>Three dimensional flow</subject><subject>Three dimensional printing</subject><subject>Uniform flow</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRS0EoqWw4QOQJTYIKeBHEsfLEp5SJTawjhzHFi5JXPxQ1b_H0NIFs5mRfXQ1cwA4x-gGI8pvZdVLlCpvD8AU54xmCFf8cD9zNgEn3i8RwkVeVsdgQnhR8rJkUyDnkN5nK2fGoDqoe7uGnfHBmTYG6-DahA8YR6OtG7a_TgQFpR2Dsz1Mz3CIfTCZD0J-poTBSGd1H01nJPQbH9TgT8GRFr1XZ7s-A--PD2_1c7Z4fXqp54tM5jgPmcJESa5FJVqEqGCt0ioXSBaSC0EIZlVZCcYJx4Iz3rFOKVF0XHORc0qRpjNwtc1dOfsVlQ_NYLxUfS9GZaNvSNKCUhAuE3r5D13a6Ma0XaJISSgrOEnU9ZZKN3nvlG6SqEG4TYNR86O-qatF_av-LsEXu8jYDqrbo3-u6TfRFX-O</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Park, Young-June</creator><creator>Yu, Taejong</creator><creator>Yim, Se-Jun</creator><creator>You, Donghyun</creator><creator>Kim, Dong-Pyo</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6804-1955</orcidid><orcidid>https://orcid.org/0000-0003-4383-3056</orcidid></search><sort><creationdate>20180101</creationdate><title>A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems</title><author>Park, Young-June ; Yu, Taejong ; Yim, Se-Jun ; You, Donghyun ; Kim, Dong-Pyo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-e12ec9fa8ab003a7befe4a0c5c9aa2217868a79291a979d7deea5d9f9a49330f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Distributors</topic><topic>Drug delivery systems</topic><topic>Energy conversion</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Microchannels</topic><topic>Pressure drop</topic><topic>Three dimensional flow</topic><topic>Three dimensional printing</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Young-June</creatorcontrib><creatorcontrib>Yu, Taejong</creatorcontrib><creatorcontrib>Yim, Se-Jun</creatorcontrib><creatorcontrib>You, Donghyun</creatorcontrib><creatorcontrib>Kim, Dong-Pyo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Young-June</au><au>Yu, Taejong</au><au>Yim, Se-Jun</au><au>You, Donghyun</au><au>Kim, Dong-Pyo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>18</volume><issue>8</issue><spage>1250</spage><epage>1258</epage><pages>1250-1258</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer. The 3D printed flow distributor with a CFD-optimized fluidic damper is found to achieve a low maldistribution factor (MF) of 2.2% for the average flow rate over 25 exit channels while inducing only a minor increment (&lt;6%) in the pressure drop. A generalized manual is proposed for the design of optimal flow distributors with different scale-up dimensions. Using the manual, an optimal flow distributor with 625 stacked microchannels with a MF of only 1.2% is successfully designed. It is expected that the design manual and the rapid printing platform will allow the efficient development of multi-channel stacked micro-devices such as those in drug delivery and energy conversion systems where equidistribution of fluid flow is highly demanded.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29569667</pmid><doi>10.1039/c8lc00004b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6804-1955</orcidid><orcidid>https://orcid.org/0000-0003-4383-3056</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2018-01, Vol.18 (8), p.1250-1258
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_2018022116
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Channels
Computational fluid dynamics
Distributors
Drug delivery systems
Energy conversion
Flow velocity
Fluid flow
Microchannels
Pressure drop
Three dimensional flow
Three dimensional printing
Uniform flow
title A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D-printed%20flow%20distributor%20with%20uniform%20flow%20rate%20control%20for%20multi-stacked%20microfluidic%20systems&rft.jtitle=Lab%20on%20a%20chip&rft.au=Park,%20Young-June&rft.date=2018-01-01&rft.volume=18&rft.issue=8&rft.spage=1250&rft.epage=1258&rft.pages=1250-1258&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c8lc00004b&rft_dat=%3Cproquest_cross%3E2026237592%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2026237592&rft_id=info:pmid/29569667&rfr_iscdi=true