A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems
In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamic...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2018-01, Vol.18 (8), p.1250-1258 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the scale-up of chemical production in a microfluidic system, it is challenging to prevent flow maldistribution from a single inlet into stacked multiple microchannel exits. In the present study, a compact flow distributor equipped with a fluidic damper is developed by computational fluid dynamics (CFD) along with experimental validation. A microfluidic flow distributor, which is equipped with an optimized fluidic damper and consists of 25 exit channels, is fabricated as an integrated body using a digital light processing (DLP) type 3D printer. The 3D printed flow distributor with a CFD-optimized fluidic damper is found to achieve a low maldistribution factor (MF) of 2.2% for the average flow rate over 25 exit channels while inducing only a minor increment ( |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c8lc00004b |