Theoretical investigation of the structures and properties of CL-20/DNB cocrystal and associated PBXs by molecular dynamics simulation

In this work, a CL-20/DNB cocrystal explosive model was established and six different kinds of fluoropolymers, i.e., PVDF, PCTFE, F 2311 , F 2312 , F 2313 and F 2314 were added into the (1 0 0), (0 1 0), (0 0 1) crystal orientations to obtain the corresponding polymer bonded explosives (PBXs). The i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular modeling 2018-04, Vol.24 (4), p.97-10, Article 97
Hauptverfasser: Hang, Gui-Yun, Yu, Wen-Li, Wang, Tao, Li, Zhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a CL-20/DNB cocrystal explosive model was established and six different kinds of fluoropolymers, i.e., PVDF, PCTFE, F 2311 , F 2312 , F 2313 and F 2314 were added into the (1 0 0), (0 1 0), (0 0 1) crystal orientations to obtain the corresponding polymer bonded explosives (PBXs). The influence of fluoropolymers on PBX properties (energetic property, stability and mechanical properties) was investigated and evaluated using molecular dynamics (MD) methods. The results reveal a decrease in engineering moduli, an increase in Cauchy pressure (i.e., rigidity and stiffness is lessened), and an increase in plastic properties and ductility, thus indicating that the fluoropolymers have a beneficial influence on the mechanical properties of PBXs. Of all the PBXs models tested, the mechanical properties of CL-20/DNB/F 2311 were the best. Binding energies show that CL-20/DNB/F 2311 has the highest intermolecular interaction energy and best compatibility and stability. Therefore, F 2311 is the most suitable fluoropolymer for PBXs. The mechanical properties and binding energies of the three crystal orientations vary in the order (0 1 0) > (0 0 1) > (1 0 0), i.e., the mechanical properties of the (0 1 0) crystal orientation are best, and this is the most stable crystal orientation. Detonation performance results show that the density and detonation parameters of PBXs are lower than those of the pure CL-20 and CL-20/DNB cocrystal explosive. The power and energetic performance of PBXs are thus weakened; however, these PBXs still have excellent detonation performance and are very promising. The results and conclusions provide some helpful guidance and novel instructions for the design and manufacture of PBXs.
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-018-3638-3