Patient-specific parameterised cam geometry in finite element models of femoroacetabular impingement of the hip
Impingement resulting in soft tissue damage has been observed in hips with abnormal morphologies. Geometric parameterisation can be used to automatically generate a range of bone geometries for use in computational models, including femurs with cam deformity on the femoral neck. This study verified...
Gespeichert in:
Veröffentlicht in: | Clinical biomechanics (Bristol) 2018-05, Vol.54, p.62-70 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Impingement resulting in soft tissue damage has been observed in hips with abnormal morphologies. Geometric parameterisation can be used to automatically generate a range of bone geometries for use in computational models, including femurs with cam deformity on the femoral neck.
This study verified patient-specific parametric finite element models of 20 patients with cam deformity (10 female, 10 male) through comparison to their patient-specific segmentation-based equivalents. The parameterisation system was then used to generate further models with parametrically defined geometry to investigate morphological changes in both the femur and acetabulum and their effects on impingement.
Similar findings were observed between segmentation-based and parametric models when assessing soft tissue strains under impingement conditions, resulting from high flexion and internal rotations. Parametric models with cam morphology demonstrated that clinically used alpha angles should not be relied on for estimating impingement severity since planar views do not capture the full three-dimensional geometry of the joint. Furthermore, the parametric approach allowed study of labral shape changes, indicating higher strains can result from bony overcoverage.
The position of cams, as well as their size, can affect the level of soft tissue strain occurring in the hip. This highlights the importance of reporting the full details of three-dimensional geometry used when developing computational models of the hip joint and suggests that it could be beneficial to stratify the patient population when considering treatment options, since certain morphologies may be at greater risk of elevated soft tissue strain.
•Geometric parameterisation automatically generates femoral geometry with cams.•Similar displacements and strains occurred in segmented and parametric models.•Compression of the cartilage by the cam is seen as main cause of impingement damage.•Alpha angles did not predict impingement severity seen in models.•Higher strains resulted from bony overcoverage. |
---|---|
ISSN: | 0268-0033 1879-1271 |
DOI: | 10.1016/j.clinbiomech.2018.03.007 |