Path-integral Monte Carlo simulation of time-reversal noninvariant bulk systems with a case study of rotating Yukawa gases
We elaborate on the methodology to simulate bulk systems in the absence of time-reversal symmetry by the phase-fixed path-integral Monte Carlo method under (possibly twisted) periodic boundary conditions. Such systems include two-dimensional electrons in the quantum Hall regime and rotating ultracol...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2018-02, Vol.97 (2-1), p.022140-022140, Article 022140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We elaborate on the methodology to simulate bulk systems in the absence of time-reversal symmetry by the phase-fixed path-integral Monte Carlo method under (possibly twisted) periodic boundary conditions. Such systems include two-dimensional electrons in the quantum Hall regime and rotating ultracold Bose and Fermi gases; time-reversal symmetry is broken by an external magnetic field and the Coriolis force, respectively. We provide closed-form expressions in terms of Jacobi elliptic functions for the thermal density matrix (or the Euclidean propagator) of a single particle on a flat torus under very general conditions. We then modify the multislice sampling method in order to sample paths by the magnitude of the complex-valued thermal density matrix. Finally, we demonstrate that these inventions let us study the vortex melting process of a two-dimensional Yukawa gas in terms of the de Boer interaction strength parameter, temperature, and rotation (Coriolis force). The bosonic case is relevant to ultracold Fermi-Fermi mixtures of widely different masses under rotation. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.97.022140 |