Bioinspired Flexible and Highly Responsive Dual-Mode Strain/Magnetism Composite Sensor

The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-04, Vol.10 (13), p.11197-11203
Hauptverfasser: Huang, Pei, Li, Yuan-Qing, Yu, Xiao-Guang, Zhu, Wei-Bin, Nie, Shu-Yan, Zhang, Hao, Liu, Jin-Rui, Hu, Ning, Fu, Shao-Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mimicry of human skin to detect both oncoming and physical-contacting object is of great importance in the fields of manufacturing, artificial robots and vehicles, etc. Herein, a novel bioinspired flexible and highly responsive dual-mode strain/magnetism composite sensor, which works via both contact and contactless modes, is first fabricated by incorporating Fe3O4/silicone system into a carbon fiber aerogel (CFA). The distance dependence of magnetic field endorses the CFA/Fe3O4/silicone composite possible for spatial sensing due to the introduction of Fe3O4 magnetic nanoparticles. As a result, the as-prepared flexible sensor exhibits precise and real-time response not only to direct-contact compression as usual but also to contactless magnetic field in a wide frequency range from 0.1 to 10 Hz, achieving the maximum variance of 68% and 86% in relative electrical resistance, respectively. The contact and contactless sensing modes of the strain/magnetism sensor are clearly demonstrated by recording the speeds of bicycle riding and walking, respectively. Interestingly, this dual-mode composite sensor exhibits the capacity of identifying the contact and contactless state, which is the first report for flexible sensors. The current protocol is eco-friendly, facile, and thought-provoking for the fabrication of multifunctional sensors.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.8b00250