Graphdiyne Containing Atomically Precise N Atoms for Efficient Anchoring of Lithium Ion
The qualitative and quantitative nitrogen-doping strategy for carbon materials is reported here. Novel porous nanocarbon networks pyrimidine-graphdiyne (PM-GDY) and pyridine-graphdiyne (PY-GDY) films with large areas were successfully prepared. These films are self-supported, uniform, continuous, fl...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2019-01, Vol.11 (3), p.2608-2617 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The qualitative and quantitative nitrogen-doping strategy for carbon materials is reported here. Novel porous nanocarbon networks pyrimidine-graphdiyne (PM-GDY) and pyridine-graphdiyne (PY-GDY) films with large areas were successfully prepared. These films are self-supported, uniform, continuous, flexible, transparent, and quantitively doped with merely pyridine-like nitrogen (N) atoms through the facile chemical synthesis route. Theoretical predictions imply these N doped carbonaceous materials are much favorable for storing lithium (Li)-ions since the pyridinic N can enhance the interrelated binding energy. As predicted, PY-GDY and PM-GDY display excellent electrochemical performance as anode materials of LIBs, such as the superior rate capability, the high capacity of 1168 (1165) mA h g–1 at current density of 100 mA g–1 for PY-GDY (PM-GDY), and the excellent stability of cycling for 1500 (4000) cycles at 5000 mA g–1 for PY-GDY (PM-GDY). |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.8b01823 |