RS-100642-198, a novel sodium channel blocker, provides differential neuroprotection against hypoxia/hypoglycemia, veratridine or glutamate-mediated neurotoxicity in primary cultures of rat cerebellar neurons

The present study investigated the effects of RS-100642-198 (a novel sodium channel blocker), and two related compounds (mexiletine and QX-314), in in vitro models of neurotoxicity. Neurotoxicity was produced in primary cerebellar cultures using hypoxia/hypoglycemia (H/H), veratridine or glutamate w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotoxicity research 2001-07, Vol.3 (4), p.381-395
Hauptverfasser: Dave, J R, Lin, Y, Ved, H S, Koenig, M L, Clapp, L, Hunter, J, Tortella, F C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study investigated the effects of RS-100642-198 (a novel sodium channel blocker), and two related compounds (mexiletine and QX-314), in in vitro models of neurotoxicity. Neurotoxicity was produced in primary cerebellar cultures using hypoxia/hypoglycemia (H/H), veratridine or glutamate where, in vehicle-treated neurons, 65%, 60% and 75% neuronal injury was measured, respectively. Dose-response neuroprotection experiments were carried out using concentrations ranging from 0.1-500 micro M. All the sodium channel blockers were neuroprotective against H/H-induced injury, with each exhibiting similar potency and efficacy. However, against veratridine-induced neuronal injury only RS-100642-198 and mexiletine were 100% protective, whereas QX-314 neuroprotection was limited (i.e. only 54%). In contrast, RS-100642-198 and mexiletine had no effect against glutamate-induced injury, whereas QX-314 produced a consistent, but very limited (i.e. 25%), neuroprotection. Measurements of intraneuronal calcium [Ca(2+)]i) mobilization revealed that glutamate caused immediate and sustained increases in [Ca(2+)]i which were not affected by RS-100642-198 or mexiletine. However, both drugs decreased the initial amplitude and attenuated the sustained rise in [Ca(2+)]i mobilization produced by veratridine or KCl depolarization. QX-314 produced similar effects on glutamate-, veratridine- or KCl-induced [Ca(2+)]i dynamics, effectively decreasing the amplitude and delaying the initial spike in [Ca(2+)]i, and attenuating the sustained increase in [Ca(2+)]i mobilization. By using different in vitro models of excitotoxicity, a heterogeneous profile of neuroprotective effects resulting from sodium channel blockade has been described for RS-100642-198 and related drugs, suggesting that selective blockade of neuronal sodium channels in pathological conditions may provide therapeutic neuroprotection against depolarization/excitotoxicity via inhibition of voltage-dependent Na(+) channels.
ISSN:1029-8428
1476-3524
DOI:10.1007/BF03033199