Investigation of channel model for weakly coupled multicore fiber
We investigate the evolution of the decorrelation bandwidth of intercore crosstalk (IC-XT) based on the modified mode-coupled equations (MCEs) in homogeneous weakly coupled multicore fibers (WC-MCFs). The modified MCEs are numerically solved by combining the fourth order Runge-Kutta method with the...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-03, Vol.26 (5), p.5182-5199 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the evolution of the decorrelation bandwidth of intercore crosstalk (IC-XT) based on the modified mode-coupled equations (MCEs) in homogeneous weakly coupled multicore fibers (WC-MCFs). The modified MCEs are numerically solved by combining the fourth order Runge-Kutta method with the compound Simpson integral method. It can be theoretically and numerically observed that the decorrelation bandwidth of IC-XT decreases with transmission distance by fractional linear function. The evolution rule of IC-XT's decorrelation bandwidth is further confirmed by experiments, which can be used as an evaluation criterion for the channel model. Finally, we propose a new channel model with the coupling matrix of IC-XT generated directly from the phase transfer function (PTF), which is in good agreement with the above evaluation criterion. We believe the proposed channel model can provide a good simulation platform for homogeneous WC-MCF based communication systems. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.005182 |