An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response
It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally char...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2018-11, Vol.164 (3), p.279-289 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | 3 |
container_start_page | 279 |
container_title | Physiologia plantarum |
container_volume | 164 |
creator | An, Jian‐Ping Yao, Ji‐Fang Xu, Rui‐Rui You, Chun‐Xiang Wang, Xiao‐Fei Hao, Yu‐Jin |
description | It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress. |
doi_str_mv | 10.1111/ppl.12724 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2013104453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117319362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</originalsourceid><addsrcrecordid>eNp10E1vFCEYB3BibOxaPfgFDIkXPUzLw8uwc9xsfEs2tQc9E4Z5xp2GhRGYmP32Zd3qwaRcSODHPw9_Qt4Au4a6bubZXwPXXD4jKxBd1wim5HOyYkxA0wnQl-RlzveMQdsCf0Eueae4btdsRYZNoLa-R3q72dKSbMguTXOZYqCjdSUmimFvg8NMs_WF5pIwZ1qix3Q6pv2RHuKweFum8JOWPVIs-6PHgLTKOYaMr8jFaH3G14_7Ffnx6eP37Zdm9-3z1-1m1zihhGxGLdXY96AHVNpCO2InLfZS6GE99gyd7usVjNALrbhtleTrYQ2tVM6dfiyuyPtz7pzirwVzMYcpO_TeBoxLNpyBACalEpW--4_exyWFOp3hAFpAJ1pe1YezcinmnHA0c5oONh0NMHOq3tTqzJ_qq337mLj0Bxz-yb9dV3BzBr8nj8enk8zd3e4c-QAQzo3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117319362</pqid></control><display><type>article</type><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</creator><creatorcontrib>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</creatorcontrib><description>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12724</identifier><identifier>PMID: 29527680</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abiotic stress ; Assaying ; Cellular stress response ; Electrophoretic mobility ; Electrophoretic Mobility Shift Assay ; Ethylene ; Ethylenes - metabolism ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Genetic analysis ; Malus - drug effects ; Malus - genetics ; Malus - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Salinity tolerance ; Salt ; Salt Tolerance ; Stress, Physiological - drug effects ; Stresses ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>Physiologia plantarum, 2018-11, Vol.164 (3), p.279-289</ispartof><rights>2018 Scandinavian Plant Physiology Society</rights><rights>2018 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</citedby><cites>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</cites><orcidid>0000-0002-6410-7902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29527680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Yao, Ji‐Fang</creatorcontrib><creatorcontrib>Xu, Rui‐Rui</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</description><subject>Abiotic stress</subject><subject>Assaying</subject><subject>Cellular stress response</subject><subject>Electrophoretic mobility</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Ethylene</subject><subject>Ethylenes - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genetic analysis</subject><subject>Malus - drug effects</subject><subject>Malus - genetics</subject><subject>Malus - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Salt Tolerance</subject><subject>Stress, Physiological - drug effects</subject><subject>Stresses</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1vFCEYB3BibOxaPfgFDIkXPUzLw8uwc9xsfEs2tQc9E4Z5xp2GhRGYmP32Zd3qwaRcSODHPw9_Qt4Au4a6bubZXwPXXD4jKxBd1wim5HOyYkxA0wnQl-RlzveMQdsCf0Eueae4btdsRYZNoLa-R3q72dKSbMguTXOZYqCjdSUmimFvg8NMs_WF5pIwZ1qix3Q6pv2RHuKweFum8JOWPVIs-6PHgLTKOYaMr8jFaH3G14_7Ffnx6eP37Zdm9-3z1-1m1zihhGxGLdXY96AHVNpCO2InLfZS6GE99gyd7usVjNALrbhtleTrYQ2tVM6dfiyuyPtz7pzirwVzMYcpO_TeBoxLNpyBACalEpW--4_exyWFOp3hAFpAJ1pe1YezcinmnHA0c5oONh0NMHOq3tTqzJ_qq337mLj0Bxz-yb9dV3BzBr8nj8enk8zd3e4c-QAQzo3X</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>An, Jian‐Ping</creator><creator>Yao, Ji‐Fang</creator><creator>Xu, Rui‐Rui</creator><creator>You, Chun‐Xiang</creator><creator>Wang, Xiao‐Fei</creator><creator>Hao, Yu‐Jin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6410-7902</orcidid></search><sort><creationdate>201811</creationdate><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><author>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abiotic stress</topic><topic>Assaying</topic><topic>Cellular stress response</topic><topic>Electrophoretic mobility</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Ethylene</topic><topic>Ethylenes - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genetic analysis</topic><topic>Malus - drug effects</topic><topic>Malus - genetics</topic><topic>Malus - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Salt Tolerance</topic><topic>Stress, Physiological - drug effects</topic><topic>Stresses</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Yao, Ji‐Fang</creatorcontrib><creatorcontrib>Xu, Rui‐Rui</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Jian‐Ping</au><au>Yao, Ji‐Fang</au><au>Xu, Rui‐Rui</au><au>You, Chun‐Xiang</au><au>Wang, Xiao‐Fei</au><au>Hao, Yu‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2018-11</date><risdate>2018</risdate><volume>164</volume><issue>3</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>29527680</pmid><doi>10.1111/ppl.12724</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6410-7902</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2018-11, Vol.164 (3), p.279-289 |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2013104453 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abiotic stress Assaying Cellular stress response Electrophoretic mobility Electrophoretic Mobility Shift Assay Ethylene Ethylenes - metabolism Gene expression Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology Genetic analysis Malus - drug effects Malus - genetics Malus - metabolism Plant Proteins - genetics Plant Proteins - metabolism Salinity tolerance Salt Salt Tolerance Stress, Physiological - drug effects Stresses Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Yeast Yeasts |
title | An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20apple%20NAC%20transcription%20factor%20enhances%20salt%20stress%20tolerance%20by%20modulating%20the%20ethylene%20response&rft.jtitle=Physiologia%20plantarum&rft.au=An,%20Jian%E2%80%90Ping&rft.date=2018-11&rft.volume=164&rft.issue=3&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12724&rft_dat=%3Cproquest_cross%3E2117319362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117319362&rft_id=info:pmid/29527680&rfr_iscdi=true |