An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response

It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2018-11, Vol.164 (3), p.279-289
Hauptverfasser: An, Jian‐Ping, Yao, Ji‐Fang, Xu, Rui‐Rui, You, Chun‐Xiang, Wang, Xiao‐Fei, Hao, Yu‐Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue 3
container_start_page 279
container_title Physiologia plantarum
container_volume 164
creator An, Jian‐Ping
Yao, Ji‐Fang
Xu, Rui‐Rui
You, Chun‐Xiang
Wang, Xiao‐Fei
Hao, Yu‐Jin
description It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.
doi_str_mv 10.1111/ppl.12724
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2013104453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2117319362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</originalsourceid><addsrcrecordid>eNp10E1vFCEYB3BibOxaPfgFDIkXPUzLw8uwc9xsfEs2tQc9E4Z5xp2GhRGYmP32Zd3qwaRcSODHPw9_Qt4Au4a6bubZXwPXXD4jKxBd1wim5HOyYkxA0wnQl-RlzveMQdsCf0Eueae4btdsRYZNoLa-R3q72dKSbMguTXOZYqCjdSUmimFvg8NMs_WF5pIwZ1qix3Q6pv2RHuKweFum8JOWPVIs-6PHgLTKOYaMr8jFaH3G14_7Ffnx6eP37Zdm9-3z1-1m1zihhGxGLdXY96AHVNpCO2InLfZS6GE99gyd7usVjNALrbhtleTrYQ2tVM6dfiyuyPtz7pzirwVzMYcpO_TeBoxLNpyBACalEpW--4_exyWFOp3hAFpAJ1pe1YezcinmnHA0c5oONh0NMHOq3tTqzJ_qq337mLj0Bxz-yb9dV3BzBr8nj8enk8zd3e4c-QAQzo3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117319362</pqid></control><display><type>article</type><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</creator><creatorcontrib>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</creatorcontrib><description>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.12724</identifier><identifier>PMID: 29527680</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abiotic stress ; Assaying ; Cellular stress response ; Electrophoretic mobility ; Electrophoretic Mobility Shift Assay ; Ethylene ; Ethylenes - metabolism ; Gene expression ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Genetic analysis ; Malus - drug effects ; Malus - genetics ; Malus - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Salinity tolerance ; Salt ; Salt Tolerance ; Stress, Physiological - drug effects ; Stresses ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Yeast ; Yeasts</subject><ispartof>Physiologia plantarum, 2018-11, Vol.164 (3), p.279-289</ispartof><rights>2018 Scandinavian Plant Physiology Society</rights><rights>2018 Scandinavian Plant Physiology Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</citedby><cites>FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</cites><orcidid>0000-0002-6410-7902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.12724$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.12724$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29527680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Yao, Ji‐Fang</creatorcontrib><creatorcontrib>Xu, Rui‐Rui</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><title>Physiologia plantarum</title><addtitle>Physiol Plant</addtitle><description>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</description><subject>Abiotic stress</subject><subject>Assaying</subject><subject>Cellular stress response</subject><subject>Electrophoretic mobility</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Ethylene</subject><subject>Ethylenes - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genetic analysis</subject><subject>Malus - drug effects</subject><subject>Malus - genetics</subject><subject>Malus - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Salinity tolerance</subject><subject>Salt</subject><subject>Salt Tolerance</subject><subject>Stress, Physiological - drug effects</subject><subject>Stresses</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1vFCEYB3BibOxaPfgFDIkXPUzLw8uwc9xsfEs2tQc9E4Z5xp2GhRGYmP32Zd3qwaRcSODHPw9_Qt4Au4a6bubZXwPXXD4jKxBd1wim5HOyYkxA0wnQl-RlzveMQdsCf0Eueae4btdsRYZNoLa-R3q72dKSbMguTXOZYqCjdSUmimFvg8NMs_WF5pIwZ1qix3Q6pv2RHuKweFum8JOWPVIs-6PHgLTKOYaMr8jFaH3G14_7Ffnx6eP37Zdm9-3z1-1m1zihhGxGLdXY96AHVNpCO2InLfZS6GE99gyd7usVjNALrbhtleTrYQ2tVM6dfiyuyPtz7pzirwVzMYcpO_TeBoxLNpyBACalEpW--4_exyWFOp3hAFpAJ1pe1YezcinmnHA0c5oONh0NMHOq3tTqzJ_qq337mLj0Bxz-yb9dV3BzBr8nj8enk8zd3e4c-QAQzo3X</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>An, Jian‐Ping</creator><creator>Yao, Ji‐Fang</creator><creator>Xu, Rui‐Rui</creator><creator>You, Chun‐Xiang</creator><creator>Wang, Xiao‐Fei</creator><creator>Hao, Yu‐Jin</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6410-7902</orcidid></search><sort><creationdate>201811</creationdate><title>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</title><author>An, Jian‐Ping ; Yao, Ji‐Fang ; Xu, Rui‐Rui ; You, Chun‐Xiang ; Wang, Xiao‐Fei ; Hao, Yu‐Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-f745fbb17de57a16fe94aeb437d8fb0ec7b7de1f1b3752a65428d81645cc30543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abiotic stress</topic><topic>Assaying</topic><topic>Cellular stress response</topic><topic>Electrophoretic mobility</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Ethylene</topic><topic>Ethylenes - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genetic analysis</topic><topic>Malus - drug effects</topic><topic>Malus - genetics</topic><topic>Malus - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Salinity tolerance</topic><topic>Salt</topic><topic>Salt Tolerance</topic><topic>Stress, Physiological - drug effects</topic><topic>Stresses</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Jian‐Ping</creatorcontrib><creatorcontrib>Yao, Ji‐Fang</creatorcontrib><creatorcontrib>Xu, Rui‐Rui</creatorcontrib><creatorcontrib>You, Chun‐Xiang</creatorcontrib><creatorcontrib>Wang, Xiao‐Fei</creatorcontrib><creatorcontrib>Hao, Yu‐Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Jian‐Ping</au><au>Yao, Ji‐Fang</au><au>Xu, Rui‐Rui</au><au>You, Chun‐Xiang</au><au>Wang, Xiao‐Fei</au><au>Hao, Yu‐Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response</atitle><jtitle>Physiologia plantarum</jtitle><addtitle>Physiol Plant</addtitle><date>2018-11</date><risdate>2018</risdate><volume>164</volume><issue>3</issue><spage>279</spage><epage>289</epage><pages>279-289</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>29527680</pmid><doi>10.1111/ppl.12724</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6410-7902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2018-11, Vol.164 (3), p.279-289
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_2013104453
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Abiotic stress
Assaying
Cellular stress response
Electrophoretic mobility
Electrophoretic Mobility Shift Assay
Ethylene
Ethylenes - metabolism
Gene expression
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Genetic analysis
Malus - drug effects
Malus - genetics
Malus - metabolism
Plant Proteins - genetics
Plant Proteins - metabolism
Salinity tolerance
Salt
Salt Tolerance
Stress, Physiological - drug effects
Stresses
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
Yeast
Yeasts
title An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T14%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20apple%20NAC%20transcription%20factor%20enhances%20salt%20stress%20tolerance%20by%20modulating%20the%20ethylene%20response&rft.jtitle=Physiologia%20plantarum&rft.au=An,%20Jian%E2%80%90Ping&rft.date=2018-11&rft.volume=164&rft.issue=3&rft.spage=279&rft.epage=289&rft.pages=279-289&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.12724&rft_dat=%3Cproquest_cross%3E2117319362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117319362&rft_id=info:pmid/29527680&rfr_iscdi=true