An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response

It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2018-11, Vol.164 (3), p.279-289
Hauptverfasser: An, Jian‐Ping, Yao, Ji‐Fang, Xu, Rui‐Rui, You, Chun‐Xiang, Wang, Xiao‐Fei, Hao, Yu‐Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that ethylene signaling is involved in the regulation of the salt stress response. However, the molecular mechanism of ethylene‐regulated salt stress tolerance remains largely unclear. In this study, an apple NAM ATAF CUC transcription factor, MdNAC047, was isolated and functionally characterized to be involved in ethylene‐modulated salt tolerance. MdNAC047 gene was significantly induced by salt treatment and its overexpression conferred increased tolerance to salt stress and facilitated the release of ethylene. Quantitative real‐time‐PCR analysis demonstrated that overexpression of MdNAC047 increased the expression of ethylene‐responsive genes. Electrophoretic mobility shift assay, yeast one‐hybrid and dual‐luciferase assays suggested that MdNAC047 directly binds to the MdERF3 (ETHYLENE RESPONSE FACTOR) promoter and activates its transcription. In addition, genetic analysis assays indicated that MdNAC047 regulates ethylene production at least partially in an MdERF3‐dependent pathway. Overall, we found a novel ‘MdNAC047‐MdERF3‐ethylene‐salt tolerance’ regulatory pathway, which provide new insight into the link between ethylene and salt stress.
ISSN:0031-9317
1399-3054
DOI:10.1111/ppl.12724