Measuring the Vibrational Density of States of Nanocrystal-Based Thin Films with Inelastic X‑ray Scattering

Knowledge of the vibrational structure of a semiconductor is essential for explaining its optical and electronic properties and enabling optimized materials selection for optoelectronic devices. However, measurement of the vibrational density of states of nanomaterials is challenging. Here, using th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-04, Vol.9 (7), p.1561-1567
Hauptverfasser: Yazdani, Nuri, Nguyen-Thanh, Tra, Yarema, Maksym, Lin, Weyde M M, Gao, Ramon, Yarema, Olesya, Bosak, Alexey, Wood, Vanessa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knowledge of the vibrational structure of a semiconductor is essential for explaining its optical and electronic properties and enabling optimized materials selection for optoelectronic devices. However, measurement of the vibrational density of states of nanomaterials is challenging. Here, using the example of colloidal nanocrystals (quantum dots), we show that the vibrational density of states of nanomaterials can be accurately and efficiently measured with inelastic X-ray scattering (IXS). Using IXS, we report the first experimental measurements of the vibrational density of states for lead sulfide nanocrystals with different halide-ion terminations and for CsPbBr3 perovskite nanocrystals. IXS findings are supported with ab initio molecular dynamics simulations, which provide insight into the origin of the measured vibrational structure and the effect of nanocrystal surface. Our findings highlight the advantages of IXS compared to other methods for measuring the vibrational density of states of nanocrystals such as inelastic neutron scattering and Raman scattering.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b00409