Knockdown of PRKAR2B Results in the Failure of Oocyte Maturation

Background/Aims: Cyclic adenosine monophosphate (cAMP)-dependent type 2 regulatory subunit beta (Prkar2b) is a regulatory isoform of cAMP-dependent protein kinase (PKA), which is the primary target for cAMP actions. In oocytes, PKA and the pentose phosphate pathway (PPP) have important roles during...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular Physiology and Biochemistry 2018-03, Vol.45 (5), p.2009-2020
Hauptverfasser: Yoon, Hyemin, Jang, Hoon, Kim, Eun-Young, Moon, Sohyeon, Lee, Sangho, Cho, Minha, Cho, Hye Jung, Ko, Jung Jae, Chang, Eun Mi, Lee, Kyung-Ah, Choi, Youngsok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aims: Cyclic adenosine monophosphate (cAMP)-dependent type 2 regulatory subunit beta (Prkar2b) is a regulatory isoform of cAMP-dependent protein kinase (PKA), which is the primary target for cAMP actions. In oocytes, PKA and the pentose phosphate pathway (PPP) have important roles during the germinal vesicle (GV) stage arrest of development. Although the roles of the PKA signal pathway have been studied in the development of oocyte, there has been no report on the function of PRKAR2B, a key regulator of PKA. Methods: Using reverse transcription polymerase chain reaction (RT-PCR), quantitative real-time PCR (qRT-PCR), immunohistochemistry, and immunofluorescence, we determined the relative expression of Prkar2b in various tissues, including ovarian follicles, during oocyte maturation. Prkar2b-interfering RNA (RNAi) microinjection was conducted to confirm the effect of Prkar2b knockdown, and immunofluorescence, qRT-PCR, and time-lapse video microscopy were used to analyze Prkar2b-deficient oocytes. Results: Prkar2b is strongly expressed in the ovarian tissues, particularly in the growing follicle. During oocyte maturation, the highest expression of Prkar2b was during metaphase I (MI), with a significant decrease at metaphase II (MII). RNAi-mediated Prkar2b suppression resulted in MI-stage arrest during oocyte development, and these oocytes exhibited abnormal spindle formation and chromosome aggregation. Expression of other members of the PKA family (except for Prkaca) were decreased, and the majority of the PPP factors were also reduced in Prkar2b-deficient oocytes. Conclusion: These results suggest that Prkar2b is closely involved in the maturation of oocytes by controlling spindle formation and PPP-mediated metabolism.
ISSN:1015-8987
1421-9778
DOI:10.1159/000487978