Lactobacillus gasseri in the Upper Small Intestine Impacts an ACSL3-Dependent Fatty Acid-Sensing Pathway Regulating Whole-Body Glucose Homeostasis

Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2018-03, Vol.27 (3), p.572-587.e6
Hauptverfasser: Bauer, Paige V., Duca, Frank A., Waise, T.M. Zaved, Dranse, Helen J., Rasmussen, Brittany A., Puri, Akshita, Rasti, Mozhgan, O'Brien, Catherine A., Lam, Tony K.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway. [Display omitted] •Upper small intestinal fatty acid-ACSL3 sensing impacts glucose homeostasis•HFD decreases Lactobacillus gasseri (LG) and disrupts ACSL3-fatty acid sensing•Regular chow microbiota transplant restores LG and ACSL3-lipid sensing•Lactobacillus gasseri administration restores ACSL3-lipid sensing in HFD rodents Bauer et al. report that a glucoregulatory pre-absorptive ACSL3-dependent fatty acid-sensing pathway in the upper small intestine is compromised by a high-fat diet. Fatty acid sensing and glucose homeostasis are restored by probiotic Lactobacillus gasseri administration or by transplantation of microbiota from chow-fed animals.
ISSN:1550-4131
1932-7420
DOI:10.1016/j.cmet.2018.01.013