Discovery of [cis-3-({(5R)‑5-[(7-Fluoro-1,1-dimethyl-2,3-dihydro‑1H‑inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)‑yl}carbonyl)cyclobutyl]acetic Acid (TAK-828F) as a Potent, Selective, and Orally Available Novel Retinoic Acid Receptor-Related Orphan Receptor γt Inverse Agonist
A series of tetrahydronaphthyridine derivatives as novel RORγt inverse agonists were designed and synthesized. We reduced the lipophilicity of tetrahydroisoquinoline compound 1 by replacement of the trimethylsilyl group and SBDD-guided scaffold exchange, which successfully afforded compound 7 with...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2018-04, Vol.61 (7), p.2973-2988 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of tetrahydronaphthyridine derivatives as novel RORγt inverse agonists were designed and synthesized. We reduced the lipophilicity of tetrahydroisoquinoline compound 1 by replacement of the trimethylsilyl group and SBDD-guided scaffold exchange, which successfully afforded compound 7 with a lower log D value and tolerable in vitro activity. Consideration of LLE values in the subsequent optimization of the carboxylate tether led to the discovery of [cis-3-({(5R)-5-[(7-fluoro-1,1-dimethyl-2,3-dihydro-1H-inden-5-yl)carbamoyl]-2-methoxy-7,8-dihydro-1,6-naphthyridin-6(5H)-yl}carbonyl)cyclobutyl]acetic acid, TAK-828F (10), which showed potent RORγt inverse agonistic activity, excellent selectivity against other ROR isoforms and nuclear receptors, and a good pharmacokinetic profile. In animal studies, oral administration of compound 10 exhibited robust and dose-dependent inhibition of IL-17A cytokine expression in a mouse IL23-induced gene expression assay. Furthermore, development of clinical symptoms in a mouse experimental autoimmune encephalomyelitis model was significantly reduced. Compound 10 was selected as a clinical compound for the treatment of Th17-driven autoimmune diseases. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.8b00061 |