Sulfur removal from model fuel by Zn impregnated retorted shale and with assistance of design of experiments
There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbe...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2018-05, Vol.25 (14), p.13760-13774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is global concern about acid rain and other pollution which is caused by the consumption of oil. By decreasing sulfur content in the oil, we can reduce unwanted emissions and acid rain. Shale was used which is a solid waste generated in the pyrolysis of shale, impregnated with Zn as an adsorbent which removes sulfur present in fuels from the hexane/toluene model solution. An influence of the agitation time (60–180 min), temperature (25–35 °C), adsorbent mass (0.1–0.25 g), and initial sulfur concentration (100–250 ppm) factorial 24 with three central points totaling 19 experiments was applied to investigate the effect of the variables on the efficiency of sulfur removal in fuels. The values of the parameters tested for maximum sulfur removal were obtained as follows: contact time = 180 min, temperature = 35 °C, adsorbent mass = 0.25 g, and initial sulfur concentration = 100 ppm. The mathematical model proposed with
R
2
99.97% satisfied the experimental data. This may provide a theoretical basis for new research and alternative uses for tailings of schist industrialization in order to evaluate its potential. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-018-1504-6 |