Does Capsular Laxity Lead to Microinstability of the Native Hip?
Background: Hip “microinstability” is commonly cited as the cause of symptoms that occur in the presence of translation of the femoral head away from conformity with the acetabular fossa. However, there is still no consistent objective criteria defining its presence and biomechanical basis. One hypo...
Gespeichert in:
Veröffentlicht in: | The American journal of sports medicine 2018-05, Vol.46 (6), p.1315-1323 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
Hip “microinstability” is commonly cited as the cause of symptoms that occur in the presence of translation of the femoral head away from conformity with the acetabular fossa. However, there is still no consistent objective criteria defining its presence and biomechanical basis. One hypothesis is that abnormal motion of the articular surfaces occurs because of capsular laxity, ultimately leading to clinical symptoms.
Purpose:
To determine the relationship between capsular laxity and abnormal rotation and translation of the hip.
Study Design:
Controlled laboratory study.
Methods:
Eight cadaveric hips were dissected down to the capsule and mounted in a customized multiaxial hip activity simulator. Each specimen was loaded with 5 N·m of internal and external rotational torque in full extension and 0°, 30°, 60°, and 90° of flexion. During testing, the relative position and rotation of the femur and the pelvis were monitored in real time with a 6-camera motion analysis system. The testing was repeated after capsular laxity was generated by placing a regular array of incisions (“pie crusting”) in the iliofemoral, pubofemoral, and ischiofemoral ligaments. Joint rotation and femoral head translation were calculated with specimen-specific models. A hip microinstability index was defined as the ratio between the length of the locus of the femoral head center and the radius of the femoral head during rotation from extension to 90° of flexion.
Results:
In intact hips, the components of femoral head translation were within 0.5 mm in positions close to neutral ( |
---|---|
ISSN: | 0363-5465 1552-3365 |
DOI: | 10.1177/0363546518755717 |