Phycocyanin: One Complex, Two States, Two Functions

Solar energy captured by pigments embedded in light-harvesting complexes can be transferred to neighboring pigments, dissipated, or emitted as fluorescence. Only when it reaches a reaction center is the excitation energy stabilized in the form of a charge separation and converted into chemical energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2018-03, Vol.9 (6), p.1365-1371
Hauptverfasser: Gwizdala, Michal, Krüger, Tjaart P. J, Wahadoszamen, Md, Gruber, J. Michael, van Grondelle, Rienk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar energy captured by pigments embedded in light-harvesting complexes can be transferred to neighboring pigments, dissipated, or emitted as fluorescence. Only when it reaches a reaction center is the excitation energy stabilized in the form of a charge separation and converted into chemical energy. Well-directed and regulated energy transfer within the network of pigments is therefore of crucial importance for the success of the photosynthetic processes. Using single-molecule spectroscopy, we show that phycocyanin can dynamically switch between two spectrally distinct states originating from two different conformations. Unexpectedly, one of the two states has a red-shifted emission spectrum. This state is not involved in energy dissipation; instead, we propose that it is involved in direct energy transfer to photosystem I. Finally, our findings suggest that the function of linker proteins in phycobilisomes is to stabilize one state or the other, thus controlling the light-harvesting functions of phycocyanin.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.8b00621