Mass spectrometry investigation of DNA adduct formation from bisphenol A quinone metabolite and MCF-7 cell DNA

Bisphenol A (BPA) is a widely used additive in the plastic industry and has been reported to have genotoxicity. A hypothesis that BPA may enhance breast cancer risk through the formation of its metabolic intermediate or DNA adduct has been proposed. In this study, breast cancer cell MCF-7 was cultur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2018-05, Vol.182, p.583-589
Hauptverfasser: Zhao, Hongzhi, Wei, Juntong, Xiang, Li, Cai, Zongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bisphenol A (BPA) is a widely used additive in the plastic industry and has been reported to have genotoxicity. A hypothesis that BPA may enhance breast cancer risk through the formation of its metabolic intermediate or DNA adduct has been proposed. In this study, breast cancer cell MCF-7 was cultured and the cellular DNA was extracted from the cells. The adducts of bisphenol A 3,4-quinone (BPAQ) with 2′-deoxyguanosine (dG), calf thymus DNA and MCF-7 cell DNA were investigated. DNA adducts were characterized by using electrospray ionization Orbitrap high-resolution mass spectrometry and tandem mass spectrometry. The BPA-DNA adducts of BPAQ with dG, calf thymus and MCF-7 cell DNA were identified as 3-hydroxy-bisphenol A-N7-guanine (3-OH-BPA-N7Gua). The MS/MS fragmentation pathway of 3-OH-BPA-N7Gua was proposed based on obtained accurate mass data. BPA quinone metabolites can react with MCF-7 cell DNA in vitro. The findings provide evidence that BPA might covalently bind to DNA in MCF-7 cells mediated by quinone metabolites, which may increase our understanding of health risk associated with BPA exposure. [Display omitted] •BPAQ could form a stable adduct (3-OH-BPA-N7dG) with dG and calf thymus DNA.•First time to report the in vitro reaction of BPAQ with MCF-7 breast cancer cell DNA.•First study to identify BPA-DNA adduct of BPAQ and cellular DNA.•Mass spectrometry is a powerful tool for the identification of DNA adducts.
ISSN:0039-9140
1873-3573
DOI:10.1016/j.talanta.2018.02.037