Bimetallic junction mediated synthesis of multilayer graphene edges towards ultrahigh capacity for lithium ion batteries
In this work, we report on a novel strategy to synthesize high-density graphene edges on a vertically-aligned nanorod array substrate based on multiple segmented Ni-Au units. The growth of graphene layers on Ni and Au was performed by chemical vapor deposition (CVD) leading to the effective generati...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-01, Vol.10 (11), p.5214-5220 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we report on a novel strategy to synthesize high-density graphene edges on a vertically-aligned nanorod array substrate based on multiple segmented Ni-Au units. The growth of graphene layers on Ni and Au was performed by chemical vapor deposition (CVD) leading to the effective generation of edge-rich multilayer graphene due to the distinct carbon solubility. The composite material was applied as an anode in a lithium ion battery (LIB) whose discharging capacity was found to closely depend on the total number of Ni-Au junctions within the vertical nanorods. Graphene deposited on the 19-junction composite Ni-(Au-Ni)
exhibited an ultrahigh capacity of 86.3 μAh cm
at 50 μA cm
which was much higher than graphene deposited on 1-junction, 2-junction and pure Ni nanorods. This ultrahigh capacity was mainly ascribed to the generation of high-density graphene edges engineered by the bimetallic junction. The proposed strategy opens new appealing routes to synthesize high-density graphene edges using bimetallic junctions, which is promising for increasing the performance of LIBs and other electrochemical energy systems (supercapacitors, fuel cells, etc.). |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr08109j |