Bimetallic junction mediated synthesis of multilayer graphene edges towards ultrahigh capacity for lithium ion batteries

In this work, we report on a novel strategy to synthesize high-density graphene edges on a vertically-aligned nanorod array substrate based on multiple segmented Ni-Au units. The growth of graphene layers on Ni and Au was performed by chemical vapor deposition (CVD) leading to the effective generati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-01, Vol.10 (11), p.5214-5220
Hauptverfasser: Cho, Sanghyun, Jung, Insub, Jang, Hee-Jeong, Liu, Lichun, Park, Sungho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we report on a novel strategy to synthesize high-density graphene edges on a vertically-aligned nanorod array substrate based on multiple segmented Ni-Au units. The growth of graphene layers on Ni and Au was performed by chemical vapor deposition (CVD) leading to the effective generation of edge-rich multilayer graphene due to the distinct carbon solubility. The composite material was applied as an anode in a lithium ion battery (LIB) whose discharging capacity was found to closely depend on the total number of Ni-Au junctions within the vertical nanorods. Graphene deposited on the 19-junction composite Ni-(Au-Ni) exhibited an ultrahigh capacity of 86.3 μAh cm at 50 μA cm which was much higher than graphene deposited on 1-junction, 2-junction and pure Ni nanorods. This ultrahigh capacity was mainly ascribed to the generation of high-density graphene edges engineered by the bimetallic junction. The proposed strategy opens new appealing routes to synthesize high-density graphene edges using bimetallic junctions, which is promising for increasing the performance of LIBs and other electrochemical energy systems (supercapacitors, fuel cells, etc.).
ISSN:2040-3364
2040-3372
DOI:10.1039/c7nr08109j