Metal-Free Carbocatalysis in Advanced Oxidation Reactions
Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation tec...
Gespeichert in:
Veröffentlicht in: | Accounts of chemical research 2018-03, Vol.51 (3), p.678-687 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conspectus Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications. The journey starts with the discovery of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by graphene-based materials. With the systematic investigations on most carbon allotropes, for the first time the carbocatalysis for PMS or PDS activation was correlated with the pristine carbon configuration, oxygen functionality (ketonic groups), defect degree (exposed edge sites and vacancies), and dimensional structure. Moreover, an intrinsic difference in catalytic oxidation does exist between PMS and PDS activation. For example, the PMS/carbon reaction is dominated by free radicals, while PDS/carbon catalysis was unveiled as a singlet oxygen- or nonradical-based process in which the surface-activated PDS complex directly degrades the organic pollutants without relying on the generation of free radicals. Nitrogen doping significantly enhances the carbocatalysis because of the positively charged carbon domains, which strongly bind with persulfates to form reactive intermediates toward organic reactions. More importantly, N doping substantially alters the catalytic oxidation from a radical process to a nonradical pathway in PMS activation. Codoping of sulfur or boron with nitrogen at a rational level will synergistically promote the catalysis as a result of the formation of more catalytic centers by improved charge/spin redistribution of the carbon framework. Furthermore, a structure–performance relationship was established for annealed nanodiamonds with a characteristic sp3/sp2 (c |
---|---|
ISSN: | 0001-4842 1520-4898 |
DOI: | 10.1021/acs.accounts.7b00535 |