Stormwater wetlands can function as ecological traps for urban frogs

Around cities, natural wetlands are rapidly being destroyed and replaced with wetlands constructed to treat stormwater. Although the intended purpose of these wetlands is to manage urban stormwater, they are inhabited by wildlife that might be exposed to contaminants. These effects will be exacerbat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2018-06, Vol.28 (4), p.1106-1115
Hauptverfasser: Sievers, Michael, Parris, Kirsten M., Swearer, Stephen E., Hale, Robin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Around cities, natural wetlands are rapidly being destroyed and replaced with wetlands constructed to treat stormwater. Although the intended purpose of these wetlands is to manage urban stormwater, they are inhabited by wildlife that might be exposed to contaminants. These effects will be exacerbated if animals are unable to differentiate between stormwater treatment wetlands of varying quality and some function as “ecological traps” (i.e., habitats that animals prefer despite fitness being lower than in other habitats). To examine if urban stormwater wetlands can be ecological traps for frogs, we tested if survival, metamorphosis-related measures, and predator avoidance behaviors of frogs differed within mesocosms that simulated stormwater wetlands with different contaminant levels, and paired this with a natural oviposition experiment to assess breeding-site preferences. We provide the first empirical evidence that these wetlands can function as ecological traps for frogs. Tadpoles had lower survival and were less responsive to predator olfactory cues when raised in more polluted stormwater wetlands, but also reached metamorphosis earlier and at a larger size. A greater size at metamorphosis was likely a result of increased per capita food availability due to higher mortality combined with eutrophication, although other compensatory effects such as selective-mortality removing smaller individuals from low-quality mesocosms may also explain these results. Breeding adults laid comparable numbers of eggs across wetlands with high and low contaminant levels, indicating no avoidance of the former. Since stormwater treatment wetlands are often the only available aquatic habitat in urban landscapes we need to better understand how they perform as habitats to guide management decisions that mitigate their potential ecological costs. This may include improving wetland quality so that fitness is no longer compromised, preventing colonization by animals, altering the cues animals use when selecting habitats, pretreating contaminated water prior to release, providing off-line wetlands nearby, or simply not constructing stormwater treatment wetlands in sensitive areas. Our study confirms the potential for urban stormwater treatment wetlands to function as ecological traps and highlights the need for greater awareness of their prevalence and impact at landscape scales.
ISSN:1051-0761
1939-5582
DOI:10.1002/eap.1714