Computational and Experimental Studies of Phthaloyl Peroxide-Mediated Hydroxylation of Arenes Yield a More Reactive Derivative, 4,5-Dichlorophthaloyl Peroxide
The oxidation of arenes by the reagent phthaloyl peroxide provides a new method for the synthesis of phenols. A new, more reactive arene oxidizing reagent, 4,5-dichlorophthaloyl peroxide, computationally predicted and experimentally determined to possess enhanced reactivity, has expanded the scope o...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2015-08, Vol.80 (16), p.8084-8095 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The oxidation of arenes by the reagent phthaloyl peroxide provides a new method for the synthesis of phenols. A new, more reactive arene oxidizing reagent, 4,5-dichlorophthaloyl peroxide, computationally predicted and experimentally determined to possess enhanced reactivity, has expanded the scope of the reaction while maintaining a high level of tolerance for diverse functional groups. The reaction proceeds through a novel “reverse-rebound” mechanism with diradical intermediates. Mechanistic insight was achieved through isolation and characterization of minor byproducts, determination of linear free energy correlations, and computational analysis of substituent effects of arenes, each of which provided additional support for the reaction proceeding through the diradical pathway. |
---|---|
ISSN: | 0022-3263 1520-6904 1520-6904 |
DOI: | 10.1021/acs.joc.5b01079 |