Development of a Serotype-Specific DNA Microarray for Identification of Some Shigella and Pathogenic Escherichia coli Strains

Shigella and pathogenic Escherichia coli are major causes of human infectious diseases and are responsible for millions of cases of diarrhea worldwide every year. A convenient and rapid method to identify highly pathogenic serotypes of Shigella and E. coli is needed for large-scale epidemiologic stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Clinical Microbiology 2006-12, Vol.44 (12), p.4376-4383
Hauptverfasser: Li, Yayue, Liu, Dan, Cao, Boyang, Han, Weiqing, Liu, Yanqun, Liu, Fenxia, Guo, Xi, Bastin, David A, Feng, Lu, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shigella and pathogenic Escherichia coli are major causes of human infectious diseases and are responsible for millions of cases of diarrhea worldwide every year. A convenient and rapid method to identify highly pathogenic serotypes of Shigella and E. coli is needed for large-scale epidemiologic study, timely clinical diagnosis, and reliable quarantine of the pathogens. In this study, a DNA microarray targeting O-serotype-specific genes was developed to detect 15 serotypes of Shigella and E. coli, including Shigella sonnei; Shigella flexneri type 2a; Shigella boydii types 7, 9, 13, 16, and 18; Shigella dysenteriae types 4, 8, and 10; and E. coli O55, O111, O114, O128, and O157. The microarray was tested against 186 representative strains of all Shigella and E. coli O serotypes, 38 clinical isolates, and 9 strains of other bacterial species that are commonly present in stool samples and was shown to be specific and reproducible. The detection sensitivity was 50 ng genomic DNA or 10⁴ CFU per ml in mock stool specimens. This is the first report of a microarray for serotyping Shigella and pathogenic E. coli. The method has a number of advantages over traditional bacterial culture and antiserum agglutination methods and is promising for applications in basic microbiological research, clinical diagnosis, food safety, and epidemiological surveillance.
ISSN:0095-1137
1098-660X
1098-5530
DOI:10.1128/JCM.01389-06