Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1-TGF-β-OTX2-SNAIL via PTEN inhibition
The molecular events underlying dissemination of group 3 medulloblastoma remain elusive. Ferrucci et al. show that PRUNE1 overexpression enhances the canonical TGF-β cascade, upregulates OTX2 and SNAIL, and inhibits the tumour suppressor PTEN. They describe anti-metastatic properties of an anti-PRUN...
Gespeichert in:
Veröffentlicht in: | Brain (London, England : 1878) England : 1878), 2018-05, Vol.141 (5), p.1300-1319 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The molecular events underlying dissemination of group 3 medulloblastoma remain elusive. Ferrucci et al. show that PRUNE1 overexpression enhances the canonical TGF-β cascade, upregulates OTX2 and SNAIL, and inhibits the tumour suppressor PTEN. They describe anti-metastatic properties of an anti-PRUNE1 drug, and identify further deleterious gene variants as therapeutic targets.
Abstract
Genetic modifications during development of paediatric groups 3 and 4 medulloblastoma are responsible for their highly metastatic properties and poor patient survival rates. PRUNE1 is highly expressed in metastatic medulloblastoma group 3, which is characterized by TGF-β signalling activation, c-MYC amplification, and OTX2 expression. We describe the process of activation of the PRUNE1 signalling pathway that includes its binding to NME1, TGF-β activation, OTX2 upregulation, SNAIL (SNAI1) upregulation, and PTEN inhibition. The newly identified small molecule pyrimido-pyrimidine derivative AA7.1 enhances PRUNE1 degradation, inhibits this activation network, and augments PTEN expression. Both AA7.1 and a competitive permeable peptide that impairs PRUNE1/NME1 complex formation, impair tumour growth and metastatic dissemination in orthotopic xenograft models with a metastatic medulloblastoma group 3 cell line (D425-Med cells). Using whole exome sequencing technology in metastatic medulloblastoma primary tumour cells, we also define 23 common 'non-synonymous homozygous' deleterious gene variants as part of the protein molecular network of relevance for metastatic processes. This PRUNE1/TGF-β/OTX2/PTEN axis, together with the medulloblastoma-driver mutations, is of relevance for future rational and targeted therapies for metastatic medulloblastoma group 3.
10.1093/brain/awy039_video1
awy039media1
5742053534001 |
---|---|
ISSN: | 0006-8950 1460-2156 |
DOI: | 10.1093/brain/awy039 |