Symmetry-Breaking Assisted Landau-Zener Transitions in Rydberg Atoms

We report the observation of a controlled Landau-Zener transition (LZT) in Rydberg atoms by breaking the symmetry of the underlying Hamiltonian. For a nonhydrogenic Rydberg atom inside a changing electric (F) field, a LZT occurs between the avoided crossing energy levels of neighboring Rydberg state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-02, Vol.120 (6), p.063203-063203, Article 063203
Hauptverfasser: Zhang, S S, Gao, W, Cheng, H, You, L, Liu, H P
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report the observation of a controlled Landau-Zener transition (LZT) in Rydberg atoms by breaking the symmetry of the underlying Hamiltonian. For a nonhydrogenic Rydberg atom inside a changing electric (F) field, a LZT occurs between the avoided crossing energy levels of neighboring Rydberg states only for a sufficiently high changing rate. If a transverse magnetic (B) field is applied as we implement, the atomic level symmetry is broken, which causes the Stark manifolds denoted by a different |m| (m is the magnetic quantum number) to interact with each other. The mixed state levels end up pushing the adiabatically repelled target states closer and additionally they serve as stepping stones for the sequential LZTs between the neighboring sublevels. Such a feature significantly decreases the changing rate required for an efficient LZT inside a pure electric field. We report experimental observations that support the above scenario. It opens a versatile approach for engineering a controlled LZT in more general systems.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.120.063203