Photodegradation of Dicloran in Freshwater and Seawater

Dicloran appears to be a model pesticide for investigating photodegradation processes in surface waters. Photodegradation processes are particularly relevant to this compound as it is applied to crops grown in proximity to freshwater and marine ecosystems. The photodegradation of dicloran under simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2018-03, Vol.66 (11), p.2654-2659
Hauptverfasser: Vebrosky, Emily N, Saranjampour, Parichehr, Crosby, Donald G, Armbrust, Kevin L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dicloran appears to be a model pesticide for investigating photodegradation processes in surface waters. Photodegradation processes are particularly relevant to this compound as it is applied to crops grown in proximity to freshwater and marine ecosystems. The photodegradation of dicloran under simulated sunlight was measured in distilled water, artificial seawater, phosphate buffer, and filter-sterilized estuarine water to determine its half-life, degradation rate, and photodegradation products. The half-life was approximately 7.5 h in all media. There was no significant difference in the rate of degradation between distilled water and artificial seawater for dicloran. For the intermediate products, a higher concentration of 2-chloro-1,4-benzoquinone was measured in artificial seawater versus distilled water, while a slightly higher concentration of 1,4-benzoquinone was measured in distilled water versus artificial seawater. The detection of chloride and nitrate ions after 2 h of light exposure suggests photonucleophilic substitution contributes to the degradation process. Differences in product distributions between water types suggest that salinity impacts on chemical degradation may need to be addressed in chemical exposure assessments.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.8b00211