Fast recognition of single quantum dots from high multi-exciton emission and clustering effects

Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-02, Vol.26 (4), p.4674-4685
Hauptverfasser: Li, Bin, Zhang, Guofeng, Yang, Changgang, Li, Zhijie, Chen, Ruiyun, Qin, Chengbing, Gao, Yan, Huang, He, Xiao, Liantuan, Jia, Suotang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon events. The time-tagged, time-resolved and time-correlated single-photon counting technique is applied to effectively remove multi-exciton emission and low-counting background. By this way, single QDs can be fastly recognized by the spatial coincidence-counting model. In addition, the fast recognition of single QDs by using the collected photons during the confocal scanning imaging process has been achieved synchronously.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.26.004674