Fast recognition of single quantum dots from high multi-exciton emission and clustering effects
Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-02, Vol.26 (4), p.4674-4685 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recognition of single quantum dots (QDs) from high multi-exciton emission and clustering effects is challenging using the conventional second-order correlation function method. Here we demonstrate a method for fast recognizing single QDs based on the probabilities of detecting single- and two-photon events. The time-tagged, time-resolved and time-correlated single-photon counting technique is applied to effectively remove multi-exciton emission and low-counting background. By this way, single QDs can be fastly recognized by the spatial coincidence-counting model. In addition, the fast recognition of single QDs by using the collected photons during the confocal scanning imaging process has been achieved synchronously. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.26.004674 |