Maximizing the field of view and accuracy in 3D Single Molecule Localization Microscopy
Super-resolution techniques that localize single molecules in three dimensions through point spread function (PSF) engineering are very sensitive to aberrations and optical alignment. Here we show how double-helix point spread function is affected by such mis-alignment and aberration. Specifically,...
Gespeichert in:
Veröffentlicht in: | Optics express 2018-02, Vol.26 (4), p.4631-4637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Super-resolution techniques that localize single molecules in three dimensions through point spread function (PSF) engineering are very sensitive to aberrations and optical alignment. Here we show how double-helix point spread function is affected by such mis-alignment and aberration. Specifically, we demonstrate through simulation and experiment how misplacement of phase masks in infinity corrected systems is a common source of significant loss of accuracy. We also describe an optimal alignment and calibration procedure to correct for these errors. In combination, these optimizations allow for a maximal field of view with high accuracy and precision. Though discussed with reference to double-helix point spread function (DHPSF), the optimization techniques are equally applicable to other engineered PSFs. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.004631 |