Characterization of the stochastic time evolution of short-term average intercore crosstalk in multicore fibers with multiple interfering cores

A theoretical model for the stochastic time evolution of the intercore crosstalk (ICXT) in homogeneous weakly-coupled multicore fibers (MCF) with multiple interfering cores is proposed and validated experimentally. The model relies on the introduction of non-stationary time varying random phase shif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-02, Vol.26 (4), p.4605-4620
Hauptverfasser: Alves, Tiago M F, Cartaxo, Adolfo V T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A theoretical model for the stochastic time evolution of the intercore crosstalk (ICXT) in homogeneous weakly-coupled multicore fibers (MCF) with multiple interfering cores is proposed and validated experimentally. The model relies on the introduction of non-stationary time varying random phase shifts at every center point between the phase matching points of the MCF where the difference of the effective refractive indexes of the core of the originating signal and the core suffering from ICXT is zero. Closed form-expressions for the autocovariance of the short-term average ICXT (STAXT) with stationary and non-stationary phase shift models in MCFs with multiple excited cores are derived and validated by comparison with experimental results. These expressions enable estimating the decorrelation time of the STAXT generated by multiple interfering cores from the decorrelation times of the STAXT generated by each pair of cores. The proposed model and the ICXT measurements taken continuously over more than 150 hours show that the decorrelation time of the STAXT generated by multiple interfering cores exceeds the one obtained for the pair of cores with shorter decorrelation time. The proposed model is increasingly important to simulate and design MCF-based systems where the ICXT dynamics must be properly accounted for to develop efficient ICXT-tolerant techniques.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.004605