Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions
Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol unde...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics discussions 2008-12, Vol.8 (6), p.20799-20838 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. These compounds are likely to be imidazoles formed by reaction of glyoxal with the ammonium sulphate seed. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active oxidative photochemistry, similar to that found in cloud processing, was found to occur within aerosol during irradiated experiments. Organosulphates, carboxylic acids, and organic esters were identified within the aerosol. Our study suggests that both C-N compound formation and photochemical processes should be considered in models of secondary organic aerosol formation via glyoxal. |
---|---|
ISSN: | 1680-7367 1680-7375 |