Real-time identification of the singleness of a trapped bead in optical tweezers
Beads trapped in optical tweezers are aligned along the optical propagation direction, which makes it difficult to determine the number of beads with bright-field microscopy. This problem also dramatically influences the measurement of the optical trapping based single-molecule force spectroscopy. H...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2018-02, Vol.57 (5), p.1241-1246 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beads trapped in optical tweezers are aligned along the optical propagation direction, which makes it difficult to determine the number of beads with bright-field microscopy. This problem also dramatically influences the measurement of the optical trapping based single-molecule force spectroscopy. Here, we propose a video processing approach to count the number of trapped micro-objects in real time. The approach uses a normalized cross-correlation algorithm and image enhancement techniques to amplify a slight change of the image induced by the entry of an exotic object. As tested, this method introduces a ∼10% change per bead to the image similarity, and up to four beads, one-by-one falling into the trap, are identified. Moreover, the feasibility of the above analysis in a moving trap is investigated. A movement of the trap leads to a fluctuation of less than 2% for the similarity signal and can be ignored in most cases. The experimental results prove that image similarity measurement is a sensitive way to monitor the interruption, which is very useful, especially during experiments. In addition, the approach is easy to apply to an existing optical tweezers system. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.57.001241 |