Single excitatory axons form clustered synapses onto CA1 pyramidal cell dendrites

CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2018-03, Vol.21 (3), p.353-363
Hauptverfasser: Bloss, Erik B., Cembrowski, Mark S., Karsh, Bill, Colonell, Jennifer, Fetter, Richard D., Spruston, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CA1 pyramidal neurons are a major output of the hippocampus and encode features of experience that constitute episodic memories. Feature-selective firing of these neurons results from the dendritic integration of inputs from multiple brain regions. While it is known that synchronous activation of spatially clustered inputs can contribute to firing through the generation of dendritic spikes, there is no established mechanism for spatiotemporal synaptic clustering. Here we show that single presynaptic axons form multiple, spatially clustered inputs onto the distal, but not proximal, dendrites of CA1 pyramidal neurons. These compound connections exhibit ultrastructural features indicative of strong synapses and occur much more commonly in entorhinal than in thalamic afferents. Computational simulations revealed that compound connections depolarize dendrites in a biophysically efficient manner, owing to their inherent spatiotemporal clustering. Our results suggest that distinct afferent projections use different connectivity motifs that differentially contribute to dendritic integration. Bloss et al. show single axons form clustered inputs onto the dendrites of hippocampal pyramidal cells in a projection-specific manner. The spatial and temporal features inherent in these connections efficiently drive dendritic depolarization.
ISSN:1097-6256
1546-1726
DOI:10.1038/s41593-018-0084-6