Boronic-Acid-Catalyzed Regioselective and 1,2-cis-Stereoselective Glycosylation of Unprotected Sugar Acceptors via SNi‑Type Mechanism
Regio- and 1,2-cis-stereoselective chemical glycosylation of unprotected glycosyl acceptors has been in great demand for the efficient synthesis of natural glycosides. However, simultaneously regulating these selectivities has been a longstanding problem in synthetic organic chemistry. In nature, gl...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2018-03, Vol.140 (10), p.3644-3651 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Regio- and 1,2-cis-stereoselective chemical glycosylation of unprotected glycosyl acceptors has been in great demand for the efficient synthesis of natural glycosides. However, simultaneously regulating these selectivities has been a longstanding problem in synthetic organic chemistry. In nature, glycosyl transferases catalyze regioselective 1,2-cis-glycosylations via the SNi mechanism, yet no useful chemical glycosylations based on this mechanism have been developed. In this paper, we report a highly regio- and 1,2-cis-stereoselective SNi-type glycosylation of 1,2-anhydro donors and unprotected sugar acceptors using p-nitrophenylboronic acid (10e) as a catalyst in the presence of water under mild conditions. Highly controlled regio- and 1,2-cis-stereoselectivities were achieved via the combination of boron-mediated carbohydrate recognition and the SNi-type mechanism. Mechanistic studies using the KIEs and DFT calculations were consistent with a highly dissociative concerted SNi mechanism. This glycosylation method was applied successfully to the direct glycosylation of unprotected natural glycosides and the efficient synthesis of a complex oligosaccharide with minimal protecting groups. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b12108 |