Reducing betaglycan expression by RNA interference (RNAi) attenuates inhibin bioactivity in LβT2 gonadotropes
Betaglycan is an inhibin-binding protein co-receptor, the forced expression of which confers inhibin responsiveness on cells previously non-responsive to inhibin. The present study determines whether removal of betaglycan expression in otherwise inhibin-responsive cells will render the cells insensi...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular endocrinology 2009-08, Vol.307 (1-2), p.149-156 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Betaglycan is an inhibin-binding protein co-receptor, the forced expression of which confers inhibin responsiveness on cells previously non-responsive to inhibin. The present study determines whether removal of betaglycan expression in otherwise inhibin-responsive cells will render the cells insensitive to inhibin. Small interfering RNAs (siRNAs) designed to the betaglycan gene were transfected into LβT2 gonadotrope cells to ‘knock-down’ betaglycan expression. To control for non-specific effects, siRNAs corresponding to an unrelated sequence (BF-1) were used. Two activin-responsive promoter constructs were used to assess inhibin bioactivity; an ovine FSHβ promoter (oFSHβ-lux), and a construct containing three copies of the activin-responsive sequence from the GnRHR promoter (3XpGRAS-PRL-lux). Activin stimulated the activity of both promoters 5–8-fold. Inhibin suppressed these activin-stimulated promoter activities by 52±11% and 51±7%, respectively. Similar inhibin suppression was also seen for cells co-transfected with the control BF-1 siRNAs. In contrast, inhibin's ability to suppress activin-stimulated activity was significantly reduced (33±3%, p |
---|---|
ISSN: | 0303-7207 1872-8057 |
DOI: | 10.1016/j.mce.2009.03.021 |