Mechanisms of land–sea interactions – the distribution of metals and sedimentary organic matter in sediments of a river-dominated Mediterranean karstic estuary
This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Me...
Gespeichert in:
Veröffentlicht in: | Estuarine, coastal and shelf science coastal and shelf science, 2008-10, Vol.80 (1), p.12-20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Mediterranean estuaries that are infilling with sediments and classified as river-dominated disequilibrium estuaries. The results have shown that the longitudinal distribution of heavy metals in sediments follows the sedimentation dynamics and deposition pattern of river-borne, clay mineral particles. The highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter, and decreases toward the open sea. The vertical distribution of metals in sediment cores depends on the prevailing pH and Eh conditions. Significant increases of the concentrations of metals in the uppermost strata are the result of recent anthropogenic inputs. The share of the terrestrial component in SOM, estimated by N/C
org atomic ratios and δ
13C values, decreases with distance from the river mouth. The small vertical variation in δ
13C values of SOM indicates that a fast sedimentation rate overrides the diagenetically determined decomposition. The results obtained indicate that river-borne inorganic particles, natural terrigenous organic material, and anthropogenic metal loads are trapped in sediments of the estuarine system. Under the prevailing conditions, there is negligible transport towards the open sea. |
---|---|
ISSN: | 0272-7714 1096-0015 |
DOI: | 10.1016/j.ecss.2008.07.001 |