Novel calcitonin gene-related peptide/chitosan-strontium-calcium phosphate cement: Enhanced proliferation of human umbilical vein endothelial cells in vitro
Bone cement materials have some disadvantages, including slow degradation and no biological activity, which greatly weakens their clinical application. Therefore, the search for a multifunctional bioactive bone cement has become urgent. In this study, a novel bone cement sample of calcitonin gene-re...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2019-01, Vol.107 (1), p.19-28 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bone cement materials have some disadvantages, including slow degradation and no biological activity, which greatly weakens their clinical application. Therefore, the search for a multifunctional bioactive bone cement has become urgent. In this study, a novel bone cement sample of calcitonin gene-related peptide (CGRP)/chitosan-strontium (Sr)-calcium phosphate cement (CPC) was developed. The structure and morphology were observed by scanning electron microscope (SEM). The cytotoxicity and proliferation of CGRP/chitosan-Sr-CPC were also measured. The expression of CGRP receptor 1 was measured using an immunofluorescence assay. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were employed to quantify the VEGF mRNA and protein levels, respectively. Finally, the ability of the material to improve angiogenesis was assessed by using human umbilical vein endothelial cells (HUVECs) tube formation assay. The results showed that CGRP/Chitosan-Sr-CPC had the characteristics of a good orthopedic material without showing cell cytotoxicity to HUVECs. Meanwhile, CGRP/chitosan-Sr-CPC could release CGRP and enhance the proliferation of HUVECs via CGRP receptors. Moreover, CGRP/chitosan-Sr-CPC significantly upregulated the expression of the VEGF gene and protein in HUVECs, which might help improve the angiogenesis microenvironment. Besides, CGRP/chitosan-Sr-CPC could significantly improve angiogenesis of HUVECs. These findings provide new therapeutic material for the treatment of osteoporotic bone injury. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 19-28, 2019. |
---|---|
ISSN: | 1552-4973 1552-4981 |
DOI: | 10.1002/jbm.b.34091 |