Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway
This study aims to explore the effect of epigallocatechin gallate (EGCG) on blood lipids, liver lipids, and cholesterol synthesis in hyperlipidemic rats. SREBP-2 transgenic rats were used to investigate the transcriptional level of SREBP-2 regulated by SIRT-1/FOXO1 and the molecular mechanism of rat...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular biochemistry 2018-11, Vol.448 (1-2), p.175-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aims to explore the effect of epigallocatechin gallate (EGCG) on blood lipids, liver lipids, and cholesterol synthesis in hyperlipidemic rats. SREBP-2 transgenic rats were used to investigate the transcriptional level of SREBP-2 regulated by SIRT-1/FOXO1 and the molecular mechanism of rate-limiting enzyme HMGCR that affects cholesterol synthesis. Rat models of hyperlipidemia were established and administered EGCG. Cholesterol synthesis was observed. Enzyme linked immunosorbent assay was used to determine serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), free fatty acid (FFA), superoxide dismutase (SOD), malondialdehyde (MDA), and T-AOC contents. Hematoxylin-eosin staining and oil red O staining were utilized to observe the histological changes in the liver. Biochemical method was applied to measure serum ALT and AST changes. Western blot assay and qRT-PCR were employed to detect the changes in SIRT1/FOXO1 pathway-related proteins, cholesterol synthesis-related genes, and SREBP-2. EGCG 50 mg/kg could obviously decrease the liver weight and liver coefficient, reduce serum TG, TC, LDL-C, and FFA levels (
P
|
---|---|
ISSN: | 0300-8177 1573-4919 |
DOI: | 10.1007/s11010-018-3324-x |