Many-Particle Effects in the Cyclotron Resonance of Encapsulated Monolayer Graphene
We study the infrared cyclotron resonance of high-mobility monolayer graphene encapsulated in hexagonal boron nitride, and simultaneously observe several narrow resonance lines due to interband Landau-level transitions. By holding the magnetic field strength B constant while tuning the carrier densi...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-01, Vol.120 (4), p.047401-047401, Article 047401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the infrared cyclotron resonance of high-mobility monolayer graphene encapsulated in hexagonal boron nitride, and simultaneously observe several narrow resonance lines due to interband Landau-level transitions. By holding the magnetic field strength B constant while tuning the carrier density n, we find the transition energies show a pronounced nonmonotonic dependence on the Landau-level filling factor, ν∝n/B. This constitutes direct evidence that electron-electron interactions contribute to the Landau-level transition energies in graphene, beyond the single-particle picture. Additionally, a splitting occurs in transitions to or from the lowest Landau level, which is interpreted as a Dirac mass arising from coupling of the graphene and boron nitride lattices. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.120.047401 |