Radiotherapy alters the composition, structural and mechanical properties of root dentin in vitro
Objectives Post-radiation dental lesions affect mainly the cervical area of the tooth. Until now, there are quite few evidences regarding the effects of radiation exposure on root dentin breakdown. To better understand this effect, we used human root dentin specimens obtained from third molars from...
Gespeichert in:
Veröffentlicht in: | Clinical oral investigations 2018-11, Vol.22 (8), p.2871-2878 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objectives
Post-radiation dental lesions affect mainly the cervical area of the tooth. Until now, there are quite few evidences regarding the effects of radiation exposure on root dentin breakdown. To better understand this effect, we used human root dentin specimens obtained from third molars from similarly aged individuals.
Materials and methods
Twenty specimens were analyzed by the surface hardness (SH), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) to evaluate the baseline properties of their root dentin. Other six human teeth were prepared and analyzed by scanning electron microscopy (SEM). Then the specimens were randomly distributed between two groups (
n
= 13 per group) and irradiated with a total dose of 55 or 70 Gy in a linear accelerator. The percentage of EDX and surface hardness loss (%SHL) were determined based on measurements before and after irradiation. The specimens were also analyzed after irradiation by SEM and XRD. The Ca/P weight ratio was calculated.
Results
Based on SEM analysis, radiation exposure induced dehydration of the dentin. The Ca/P weight ratio decreased (
p
= 0.0045). The %SHL of specimens irradiated with 70 Gy was higher than that of the 55-Gy group (
p
|
---|---|
ISSN: | 1432-6981 1436-3771 |
DOI: | 10.1007/s00784-018-2373-6 |