Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors
Exploring high-performance and low-priced electrode materials for supercapacitors is important but remains challenging. In this work, a unique sandwich-like nanocomposite of reduced graphene oxide (rGO)-supported N-doped carbon embedded with ultrasmall CoNiSx nanocrystallites (rGO/CoNiSx/N–C nanocom...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-01, Vol.10 (8), p.4051-4060 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploring high-performance and low-priced electrode materials for supercapacitors is important but remains challenging. In this work, a unique sandwich-like nanocomposite of reduced graphene oxide (rGO)-supported N-doped carbon embedded with ultrasmall CoNiSx nanocrystallites (rGO/CoNiSx/N–C nanocomposite) has been successfully designed and synthesized by a simple one-step carbonization/sulfurization treatment of the rGO/Co–Ni precursor. The intriguing structural/compositional/morphological advantages endow the as-synthesized rGO/CoNiSx/N–C nanocomposite with excellent electrochemical performance as an advanced electrode material for supercapacitors. Compared with the other two rGO/CoNiOx and rGO/CoNiSx nanocomposites, the rGO/CoNiSx/N–C nanocomposite exhibits much enhanced performance, including a high specific capacitance (1028.2 F g−1 at 1 A g−1), excellent rate capability (89.3% capacitance retention at 10 A g−1) and good cycling stability (93.6% capacitance retention over 2000 cycles). In addition, an asymmetric supercapacitor (ASC) device based on the rGO/CoNiSx/N–C nanocomposite as the cathode and activated carbon (AC) as the anode is also fabricated, which can deliver a high energy density of 32.9 W h kg−1 at a power density of 229.2 W kg−1 with desirable cycling stability. These electrochemical results evidently indicate the great potential of the sandwich-like rGO/CoNiSx/N–C nanocomposite for applications in high-performance supercapacitors. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr08284c |