Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives

Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2018-05, Vol.19 (5), p.1425-1434
Hauptverfasser: Nanda, Himansu Sekhar, Shah, Ankur Harish, Wicaksono, Gautama, Pokholenko, Oleksandr, Gao, Feng, Djordjevic, Ivan, Steele, Terry W. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioadhesives are a current unmet clinical need for mending of blood contacting soft tissues without inducing thrombosis. Recent development of carbene precursor bioadhesives with the advantages of on-demand curing, tuneable modulus, and wet adhesion have been synthesized by grafting diazirine onto poly (amidoamine) (PAMAM-G5) dendrimers. Herein, the structure activity relationships of platelet adhesion and activation is evaluated for the first time on the cured PAMAM-g-diazirine bioadhesives. Three strategies were employed to prevent healthy human donor platelets from adhering and activating on light-cured bioadhesive surfaces: (1) Attenuation of cationic surface charge, (2) antifouling composites by incorporating heparin and alginate in uncured formulation, and (3) heparin wash of cured bioadhesive surface. Topographical imaging of cured and ethanol dehydrated bioadhesive surfaces was used to quantify the adhered and activated platelets with scanning electron microscopy, whose resolution allowed identification of round senescent, short dendritic, and long dendritic platelets. Cured surfaces of PAMAM-g-diazirine (15%) had 10300 ± 500 adhered platelets mm–2 with 99.7% activation into short/long dendritic cells. Reduction of primary amines by higher degree of diazirine grafting or capping of free amines by acetylation reduces platelet adherence (2400 ± 200 vs 3000 ± 300, respectively). Physical incorporation of heparin and alginate in the formulations reduced the activated platelet; 1300 ± 300 and 300 ± 50, activated platelets mm–2, in comparison with additive free adhesive formulation. Similarly, heparin rinse of the surface of additive free bioadhesive reduced the activated platelet to platelets of heparin composites at 600 ± 100 platelets mm–2. PAMAM-g-diazirine (15%) bioadhesive retained the photocured mechanical properties and lap shear adhesion despite the addition of heparin and alginate additives.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.8b00074